Karakterisasi Sifat Listrik Dan Sifat Termal Hidroksiapatit, Fluorhidroksiapatit Dan Fluorapatit
DOI:
https://doi.org/10.36722/sst.v7i3.1128Abstract
The apatite compound that is often used in medicine and dentistry is hydroxyapatite with the chemical formula Ca10(PO4)6(OH)2. Fluor ions can substitute hydroxyl ions from hydroxyapatite to form crystals with the formula Ca (PO4)6(OH)2-xF2x, with the value of x indicating the index number of hydroxyl groups (OH-) replaced by fluor ions (F-). This study aims to determine the effect of fluor ion substitution on hydroxyapatite on electrical properties and thermal stability. In this study, the hydrothermal method was characterized by X-Ray diffractometer (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR), LCR meter, Thermogravimetry Analysis (DTA), and Differential Thermal Analysis (TGA). The XRD and FTIR analysis results showed that the samples obtained were in the form of hydroxyapatite, fluorhydroxyapatite, and fluorapatite, which was also indicated by the presence of functional groups PO43-, CO32-, and OH- group libration mode at a wavenumber of 740 cm-1. There was a decrease in the lattice parameter a and an increase in the crystal size as the substitution of fluor ions increased. Based on the results of the electrical and thermal properties characterization, fluorapatite has the highest conductivity and better thermal stability when compared to hydroxyapatite and fluohydroxyapatite.
Keywords – Fluor, Hydroxyapatite, Hydrothermal, eggshell, Biomaterial
References
D. H. Kohn, “Bioceramics,†in Biomedical engineering and design handbook, Second., vol. 1, M. Kutz, Ed. New York: McGraw-Hill, 2009, p. 377. Accessed: Jun. 01, 2021. [Online]. Available: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=291420
S. L. Pandharipande and S. S. Sondawale, “Review on synthesis of hydroxyapatite and its bio-composites,†IJSTR, vol. 5, no. 17, pp. 3410–3416, 2016.
M. Hincke T., J. Gautron, Y. Nys, A. B. R. Navarro, K. Mann, and M. D. McKee, “The eggshell: structure, composition and mineralization,†Front Biosci, vol. 17, no. 1, pp. 1266–1280, 2012, doi: 10.2741/3985.
G. Gergely et al., “Preparation and characterization of hydroxyapatite from eggshell,†Ceramics International, vol. 36, no. 2, pp. 803–806, Mar. 2010, doi: 10.1016/j.ceramint.2009.09.020.
K. Dahlan and Hardiyanti, “Sintesis dan karakterisasi β-tricalcium phosphate dari cangkang telur ayam dengan variasi suhu sintering,†Jurnal Biofisika, vol. 8, no. 2, p. 7, 2012.
Y. W. Sari, D. Y. Asra, and K. Dahlan, “Effect of microwave irradiation on the synthesis of carbonated hydroxyapatite (cha) from chicken eggshell,†IOP Conf. Ser: Earth Environ. Sci., vol. 187, p. 012016, Nov. 2018, doi: 10.1088/1755-1315/187/1/012016.
N. V. Bulina, S. V. Makarova, I. Yu. Prosanov, O. B. Vinokurova, and N. Z. Lyakhov, “Structure and thermal stability of fluorhydroxyapatite and fluorapatite obtained by mechanochemical method,†Journal of Solid State Chemistry, vol. 282, p. 121076, Feb. 2020, doi: 10.1016/j.jssc.2019.121076.
Hafiz, Nurlely, and Y. W. Sari, “The effect of ph variation on fluor-hydroxyapatite nano crystal synthesis with microwave irradiation method,†J. Phys.: Conf. Ser., vol. 1505, p. 012064, 2020, doi: 10.1088/1742-6596/1505/1/012064.
L. M. RodrıÌguez-Lorenzo, J. N. Hart, and K. A. Gross, “Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite,†Biomaterials, vol. 24, no. 21, pp. 3777–3785, Sep. 2003, doi: 10.1016/S0142-9612(03)00259-X.
K. A. Bhadang and K. A. Gross, “Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings,†Biomaterials, vol. 25, no. 20, pp. 4935–4945, Sep. 2004, doi: 10.1016/j.biomaterials.2004.02.043.
Y. Chen and X. Miao, “Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents,†Biomaterials, vol. 26, no. 11, pp. 1205–1210, Apr. 2005, doi: 10.1016/j.biomaterials.2004.04.027.
A. Laghzizil, N. El Herch, A. Bouhaouss, G. Lorente, and J. Macquete, “Comparison of electrical properties between fluoroapatite and hydroxyapatite materials,†Journal of Solid State Chemistry, vol. 156, no. 1, pp. 57–60, Jan. 2001, doi: 10.1006/jssc.2000.8958.
J. B. Park and R. S. Lakes, Biomaterials: an introduction, 3rd ed. New York: Springer, 2007.
K. Kapat, Q. T. H. Shubhra, M. Zhou, and S. Leeuwenburgh, “Piezoelectric nanoâ€biomaterials for biomedicine and tissue regeneration,†Adv. Funct. Mater., vol. 30, no. 44, p. 1909045, Oct. 2020, doi: 10.1002/adfm.201909045.
K. Pajor, L. Pajchel, and J. Kolmas, “Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review,†Materials, vol. 12, no. 17, p. 2683, Aug. 2019, doi: 10.3390/ma12172683.
L. Montazeri, J. Javadpour, M. A. Shokrgozar, S. Bonakdar, and S. Javadian, “Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders,†Biomed. Mater., vol. 5, no. 4, p. 045004, Aug. 2010, doi: 10.1088/1748-6041/5/4/045004.
S. K. W. Ningsih, Sintesis anorganik. Padang: UNP Press Padang, 2016.
D. Yonata, S. Aminah, and W. Hersoelistyorini, “Kadar Kalsium dan Karakteristik Fisik Tepung Cangkang Telur Unggas dengan Perendaman Berbagai Pelarut,†Jurnal Pangan dan Gizi, p. 12, 2017.
M. Sumadiyasa and I. B. S. Manuaba, “Penentuan Ukuran Kristal Menggunakan Formula Scherrer, Williamson-Hull Plot, dan Ukuran Partikel dengan SEM,†Buletin Fisika, vol. 19, no. 1, pp. 28–35, Feb. 2018.
I. Demnati, D. Grossin, F. Errassifi, C. Combes, C. Rey, and N. Le Bolay, “Synthesis of fluor-hydroxyapatite powder for plasma sprayed biomedical coatings: Characterization and improvement of the powder properties,†Powder Technology, vol. 255, pp. 23–28, Mar. 2014, doi: 10.1016/j.powtec.2013.10.022.
I. Es-saidi, J. Labrag, A. Laghzizil, and J.-M. Nunzi, “Electrical and dielectric behaviors of thermally treated phosphate minerals,†Solid State Sciences, vol. 111, p. 106440, Jan. 2021, doi: 10.1016/j.solidstatesciences.2020.10644.
Z. S. Kubro, S. T. Wahyudi, and K. Dahlan, “Synthesis of calcium phosphate: influence of sintering temperature on the formation of fluorhydroxyapatite,†International Journal of Nanoelectronics and Materials, vol. 13, no. 1, p. 8, 2020.
P. Hui, S. L. Meena, G. Singh, R. D. Agarawal, and S. Prakash, “Synthesis of Hydroxyapatite Bio-Ceramic Powder by Hydrothermal Method,†JMMCE, vol. 09, no. 08, pp. 683–692, 2010, doi: 10.4236/jmmce.2010.98049.
S. Lazić, S. Zec, N. Miljević, and S. Milonjić, “The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid,†Thermochimica Acta, vol. 374, no. 1, pp. 13–22, Jun. 2001, doi: 10.1016/S0040-6031(01)00453-1.
Aminatun et al., “Study of Mechanical and Thermal Properties in Nano-Hydroxyapatite/Chitosan/Carboxymethyl Cellulose Nanocomposite-Based Scaffold for Bone Tissue Engineering: The Roles of Carboxymethyl Cellulose,†Applied Sciences, vol. 10, no. 19, p. 6970, Oct. 2020, doi: 10.3390/app10196970.