Analisis Ekspresi Kelompok Gen-Gen Pertahanan Pada Tanaman Pisang Dalam Merespons Bakteri Patogen Ralstonia solanacearum
DOI:
https://doi.org/10.36722/sst.v4i1.251Abstract
Abstrak - Blood Disease Bacterium (BDB) adalah penyakit pada banyak tanaman bernilai ekonomis seperti tanaman pisang yang disebabkan oleh infeksi soil-borne bakteri patogen Ralstonia solanacearum. Kemampuan R.solanacearum untuk bertahan pada kondisi minimum pada tanah dan luasnya spektrum inang pertumbuhannya termasuk vektor perantara, menyebabkan belum ditemukannya strategi efektif untuk menanggulangi penyebaran penyakit BDB. Pengetahuan tentang respons tanaman pisang terhadap serangan Ralstonia solanacearum, merupakan langkah awal untuk memahami stategi tanaman dalam membentuk sistem pertahanan. Dalam penelitian ini, respons ekspresi molekuler gen-gen terkait pertahanan pada tanaman pisang kepok (Musa paradisiaca) dianalisis menggunakan teknik semikuantitatif real time PCR. Data pada penelitian ini menunjukkan WRKY15 memiliki penurunan ekspresi pada hari ke-3 dan ke-7 pasca infeksi. WRKY18 memiliki ekspresi paling rendah dibandingkan dengan WRKY15 dan WRKY23 serta tidak terdeteksi lagi ekspresinya pada hari ke-5 pasca infeksi karena WRKY18 bersifat represi pada pengaturan sistem pertahanan tanaman basal. Level ekspresi WRKY23 memiliki pola yang konsisten pada hari ke-1 sampai hari ke-7 pasca infeksi karena WRKY23 merupakan salah satu early induced gene. Penelitian ini juga didukung dengan data morfologi yang menunjukkan gejala penyakit layu bakteri berupa penguningan daun pada hari ke-5 pasca infeksi dan pada hari-4 pasca infeksi telah terlihat koloni R.solanacearum pada pseudostem.
Â
Kata Kunci - Transkriptomik, WRKY, Ralstonia solanacearum, Penyakit Layu Bakteri
Â
Abstract - Blood Disease Bacterium (BDB) is a disease in many economically valuable plants such as banana plants caused by soil-borne infection of pathogenic bacteria Ralstonia solanacearum. The ability of R. solanacearum to withstand minimum conditions on the ground and the extent of its host growth spectrum including intermediate vectors, has resulted in the lack of effective strategies to combat the spread of BDB. Knowledge about banana plant response to Ranstonia solanacearum attack, is the first step to understand crop strategy in forming defense system. In this study, the response of molecular expression of defense-related genes in banana kepok plant (Musa paradisiaca) was analyzed using semi-quantitative real time PCR technique. Data in this study showed WRKY15 had decreased expression on. WRKY18 has the lowest expression compared to WRKY15 and WRKY23 and no longer detected its expression on the 5th post-infection day because WRKY18 is repressive on the regulation of basal plant defense system. The expression level of WRKY23 has consistent pattern on the 1st day until the 7th post-infection day because WRKY23 is one of the early induced gene. This study was also supported by morphological data showing symptom of bacterial wilt disease in the form of yellowing of leaves on the 5th day post infection and on day 4 post infection has seen colonies R. solanacearum on pseudostem.
Â
Keywords - Transcriptomic, WRKY, Ralstonia solanacearum, Blood Disease BacteriumReferences
Alvarez B, Biosca EG, Lopez MM. 2010. On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. Technology and Education Topics in Applied and Microbial Biotechnology. Hal 267-279.
Choundhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal. 90: 856-867.
Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcrition factors. Reviews. Trends in Plant Science. 5 (5): 199-205.
Hadiwiyono. 2011. Blood bacterial wilt disease of banana: the distributin of pathogen in infected plant, symptoms, and potentiality of diseases tissues as sourceod infective inoculums. Nusantara BIOSIENCE. Vol 3 (3): 112-117.
Hermanto C, Eliza, Emilda D. 2013. Bunch managenet of banana to control blood disease. Australian Plant Pathol. Vol 42: 653-658.
Hersanti, R. T., A. Rupendi, Purnama, Hanudin, B. Marwoto and O. S. Gunawan. 2009. Filtration of some isolates Pseudomonas fluorescens, Bacillussubtilis and Trichoderma harzianum Antagonistic to R. solanacearum inpotatoes. ( in Indonesia) J.Agrikultura 20(3): 198-203
[NSW] Department of Primary Industries. 2014. Exotic Pest Alert. Department of Agriculture Queensland.
Goel R, Pandey A, Trivedi PK, Asif H. 2016. Genome-wide analysis of the Musa WRKY gene family: evolution and differential expression during development and cekamans. Frontiers in Plant Science. Vol 7: 1-13.
Grunewald W, Karimi M, Wieczorek K, Capelle EVD, Wischnitzki E, Grundel F, Inzé D, Beeckam T, Gheysen G. 2008. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiology. Vol 148: 358-365.
[IPDN]. The International Plant Diagnostic Network. 2014. Bacterial Wilt Disease Ralstonia solanacearum.
Julie TK, Huang H, Allen C. 2001. Ralstonia solanacearum nedds motility for invasive virulence on tomato. Journal of Bacteriology. 182 (12): 3597- 3602.
Karim A, Jiang Y, Guo L, Ling Z, Ye S, Duan Y, Li C, Luo K. 2015. Isolation and characterization of a subgroup IIa WRKY transcription factor PtrWRKY40 from Populus trichocarpa. Tree Physiology.
Li J. 2014. Role ofWRKY Transcription Factors in Arabidopsis Development and Cekamans Responssses. [Disertasi]. Univesity of Helsinki. Finland.
Levee V, Major I, Levasseur C, Tremblay L, MacKay J, Séguin. 2009. Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense. New Phytologist. Vol 184: 48-70.
McDowall J. 2007. Molecule of the Month: Zinc Fingers. https://www.ebi.ac.uk/interpro/potm/2007_3/Page1.htm. (Diakses pada 12 Juli 2016)
Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE. 2010. Transcritional reprogramming regulates by WRKY18 and WRKY40 facilities powdery mildew infection of Arabidopsis. The Plant Journal. 64: 912-923.
Ramirez JG, Munoz M, Patino LF, Morales JG. 2015. Banana moko disease management with resistance inducers and chlorine dioxide. Agronomia Columbia. 33 (2): 194-20
Subedi N. 2015. Characterization and Management of Ralstonia solanacearum Population in South Asia. [Disertasi]. The Ohio State University.
Teng SK, Aziz NAA, Mustafa M, Laboh R, Ismail IS, Sulaiman SR, Azizan AA, Devi S. 2014. The occurance of blood disease of banana in Selangor, Malaysia. International Journal of Agriculture & Biology. 18(1): 92-97.
Vanderauwra S, Vandenbroucke K, Inze A, Cotte B, Muhlenbock P, Rycke RD, Naouar N, Gaever TV, Montagu MCEV, Breusegem FV. 2012. AtWRKY15 perturbation abolishes the mitochondrial stress responsse that steers osmotic stress tolerance in Arabidopsis. PNAS. 109 (49): 20113-20118.
Vicente MRS, Plasencia J. 2011. Salicylic acid beyond defence: its role in plant grpwth and development. Journal of Experiment Botany. Vol 62 (10): 3321-3338.
Wang KLC, Yoshida H, Lurin C, Ecker JR. 2004. Regulation of ethylene gas biosynthesis by the Arabidopsis ET01 protein. Nature. Vol 34: 945-950.
Zhu QH, Stephen S, Kazan K, Jin G, et al. 2012. Characterization of the defense trasncriptome responssive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Elsevier. 1-14.